Eyl 212018
 
alice ekler
235 kez okundu



Python ile Türkçe Kelime Eklerinin Dağılımı

Türkçe “eklemeli” bir dildir. Bu nitelikteki diğer iki dil Macarca ve Moğolcadır.

Türkçede kullandığımız kelimeleri türeten eklerin konumlarını ve frekanslarını belirleyen bir çalışma yaptım.

Bu amaçla ekleri ayrıştırıp sınıflandırmak için Zemberek kütüphanesinden yararlandım.

Çalışmamın bir bölümünde derlem dosyasındaki kelimeleri kullandım.

Rekorumuz “ilişki” isminde.

Bu isme 10 ayrı ek ulanarak “ilişkilendirilemeyeceklerini” sözcüğünün oluştuğunu görüyoruz.

Daha fazla kök içeren başka kelimeler de bulunabilir. Ama bu tür örnekler büyük olasılıkla uygulanabilirlikten uzak olacaklardır.

Bu sözcüğün Zemberek ile elde ettiğimiz kırılım yapısı şu şekilde:
ilişkilendirilemeyeceklerini
ilişki ISIM_KOK 0
ilişki-le ISIM_DONUSUM_LE 1
ilişki-le-n FIIL_EDILGENSESLI_N 2
ilişki-le-n-dir FIIL_ETTIRGEN_TIR 3
ilişki-le-n-dir-il FIIL_EDILGEN_IL 4
ilişki-le-n-dir-il-e FIIL_YETERSIZLIK_E 5
ilişki-le-n-dir-il-e-me FIIL_OLUMSUZLUK_ME 6
ilişki-le-n-dir-il-e-me-yecek FIIL_DONUSUM_ECEK 7
ilişki-le-n-dir-il-e-me-yecek-ler ISIM_COGUL_LER 8
ilişki-le-n-dir-il-e-me-yecek-ler-in ISIM_TAMLAMA_IN 9
ilişki-le-n-dir-il-e-me-yecek-ler-in-i ISIM_BELIRTME_I 10

Aynı yöntemle alice.txt öyküsünü sözcüklerine, sözcükleri de eklerine ayrıştırdım ve konum frekanslarını saptadım.

Öyküde kullanılan kelimelerin ek kırılım tablosu aşağıdaki gibidir:

Şimdi toplam ek frekanslarını görselleştirelim:

Türkçe Kelime Eklerinin Dağılımı

Konum 0’daki ek sayısı, aslında hiç ek almayan kelime sayısına karşılık geliyor.
Sadece bir ek alan kelimelerin toplamı, 4545.
6 ek alan kelime ise öyküde sadece 1 kez kullanılmış:(alamadıklarından: al-a-ma-dık-lar-ın-dan)
5 ek alan kelimeler şunlar: (toplandıklarında, resimlerindekine, mırıldandığından, kestiremiyordu, götüremeyeceğini, olamayacağını, kullanmamalıydın, bahsedemezdiniz, kesilemezdi, dolamadığını, söyleyebileceklerimin, beceremiyormuşum)

Sınırlı sayıda kelime kökü (20 bin civarı) ile kısıtlı sayıda ekin (yaklaşık 100 civarı) kombinasyonu, Türkçenin zenginliğini oluşturuyor.

Siz de aşağıda verdiğim kodlardaki kaynak dosyayı değiştirerek benzer incelemeler yapabilirsiniz.

Beni izlemeye devam edin.

Ahmet Aksoy

Keywords: türkçe kökler, kelime kökleri, türkçe kelime ekleri, zemberek, python, türkçe, eklemeli dil

Eyl 162018
 
pösteki saymak
484 kez okundu

Pösteki Saymak

Sizce, tek bir Türkçe kelime kökünden yapım ve çekim ekleri kullanarak en fazla kaç kelime türetilebilir?

Tam 5081 kelime. Bu kelimelerin türetildiği kök: et.

Bu sayının büyüklüğünde aynı kökün hem yüklem hem de isim olması elbette etkilidir.

Yazının sonunda “et” kökünden türemiş sözcüklerin bazılarını vereceğim.(Hepsini vermek yazıyı gereksiz yere uzatacaktır.)

İkinci sıradaki çok kullanılan kökümüz “ol” yüklemidir. Ondan türeyen kelime sayısı: 3536.

Aşağıdaki grafikte en verimli 20 Türkçe kökü görüyorsunuz.

pösteki saymak

Sözcük türetmede kullanılan ekleri de benzer şekilde ayrıştırıp, frekanslarını buldum. En fazla kullanılan ilk iki ek “ler” ve “leri” ekleri. Onları “ları” ve “lar” izliyor. Onların peşinden gelenlerin çoğunluğunu yine çoğul eklerinin çeşitlemeleri oluşturuyor.

Sözcük türetiminde en fazla kullanılan ilk 20 eki de aşağıdaki grafikte görebilirsiniz:

pösteki saymak

Sözkonusu sayıları elde ederken bir milyon altı yüz altı bin yedi yüz yirmi iki (1,606,722) kelime içeren, kısmen denetlenmiş bir listeden yararlandım. Bu listeden çıkan tekil kök sayısı 20910. Tekil ek sayısı ise 77815.

Son günlerde Türkçe sözcüklerin kök ve eklerine ayrılması çalışmalarına yeniden yoğunlaştım. Bunda Yavuz Kömeçoğlu ve Birol Kuyumcu’nun yayınladığı örnek kodun büyük etkisi oldu: https://github.com/deeplearningturkiye/kelime_kok_ayirici
Seq2seq yöntemiyle çalışan bu kodlar 5572 kelime ve kökünü içeren bir verisetini eğitiyor ve test ediyor. Başarı oranı %97.

Aynı sistemi, kelime sayısını 42600 civarına çıkararak tekrarladım. Bu kez başarı oranı 93.6 oldu.

Parametrelerle oynayarak başarı oranı biraz daha yükseltilebilir sanırım. Ama her bir deneme GPU’lu bir makinede bile bazen saatler sürüyor.

Türkçe Doğal Dil İşleme (NLP) çalışmalarında kök ayırıcı olarak bu sistemden yararlanmak mümkün. Küçük hatalar bu tür çalışmalarda kolaylıkla hoş görülebilir.

Ancak, bu başarı düzeyleri beni bir türlü tatmin etmiyor. Çünkü ben, aslında, yazım hatalarını otomatik olarak -dışarıdan- denetleyen bir sistem geliştirme peşindeyim. Hedefim “SIFIR HATA”!

İşte burada yeni -ve çok daha basit- bir yöntem kullanmanın çok daha verimli olacağına inanıyorum: denetimden geçmiş, doğru ve güvenilir bir kelime listesi kullanmak.

Elimde iki milyona yakın sözcük barındıran ve kısmen denetlenmiş bir liste var. Bu haliyle bile oldukça iyi sonuçlar veriyor. (https://drive.google.com/drive/folders/0B_iRLUok9_qqOFozeHNFMjRHTVk adresinde paylaştığım derlem dosyalarından siz de böyle bir liste oluşturabilirsiniz.)

Aynı listeyi kök ayrımında kullanılacak şekilde geliştirmek de mümkün.

İşte bu tür çalışmaların hemen hepsi, “pösteki saymak” kavramıyla örtüşebilecek nitelikte… Çok fazla emek, sabır ve dikkat gerektiriyor. Üstelik bu çabanın “Türkçe dilgisi” ile de yoğrulmuş olması şart. Türkçe bilgime her ne kadar güveniyor olsam da, bu konunun akademik uzmanı değilim. Umuyorum ki, bir gün “bu işlerin uzmanları” da taşın altına elini koyar.

Çalışmalarımı -şimdilik- kendi kişisel emek ve bilgilerimi kullanarak gerçekleştiriyorum. “SIFIR HATA” hedefime ulaşana kadar da sürdüreceğim.

Liste (aslında sözlük) yöntemini kullanarak çözümlemeye çalıştığım kaynakların pek çoğu aşırı derecede kirli. Bu kaynakların pek çoğu tarayıcı kullanılarak sayısallaştırılmış. Bu sırada, uygulamalardaki Türkçe uyum sorunları nedeniyle pek çok yazım hatası oluşmuş. İnsan beyni bu tür hataları kolaylıkla tolere edebilse de, temiz ve güvenilir bilgi derleme açısından işler büyük ölçüde zorlaşıyor.

Bir kaç kez gönüllü ekip oluşturmayı denedik, ama sonuç alamadık.

Şimdi, yaptığım çalışmalardan elde ettiğim sonuçları -veya bir kısmını- kaynaklara ekleyerek – bir tür forward propagation ve backward propagation yöntemiyle- daha sağlıklı sonuçlar elde etmeye çalışıyorum. İşin içine insan emeği girince, çalışmalar yavaşlıyor ister istemez. Ama sonuçtan memnunum.

Kelimeleri ayrıştırıp görselleştirdiğim Python kodları şöyle:

Bunlar da “et” sözcüğünden türetme yapan eklerden bazıları:
et
edebildi
edebildik
edebildikleri
edebildikleridir
edebildiklerim
edebildiklerimden
edebildiklerime
edebildiklerimi
edebildiklerimiz
edebildiklerimizden
edebildiklerimizdi
edebildiklerimize
edebildiklerimizi
edebildiklerimizin
edebildiklerince
edebildiklerinde
edebildiklerinden
edebildiklerine
edebildiklerini
edebildiklerinin
edebildikleriydi
edebildikleriyle
edebildikse
edebildikten
edebildiler
edebildilerse
edebildim
edebildin
edebildiniz
edebildiydi
edebildiyse
edebildiysek
edebildiysem
edebildiysen
edebildiyseniz

Liste uzayıp gidiyor…

Çalışmalarımın gelişimini ve aldığım sonuçları bu sayfalarda yeri geldikçe paylaşmaya devam edeceğim.
Yeni yazılarımdan haberdar olmak istiyorsanız, Sayfanın en altındaki “Beni yeni yazılarda e-posta ile bilgilendir” seçeneğini işaretleyin.

Ahmet Aksoy

Ağu 102018
 
537 kez okundu

Kaçıncı Yeni

Kaçıncı Yeni

1950’li yıllarda edebiyat sahnesine giren “2. Yeni” şiir akımı, bir tepkiyi dile getiriyordu. Bu tepki, Varlık Dergisi etrafında Orhan Veli ve arkadaşlarının başlattığı Garip akımına karşıydı. Eş zamanlı olarak, 2. Dünya Savaşının tetiklediği bunalım ortamlarından filizlenen dadaizm ve varoluşçuluk gibi akımlardan esinlendi.

Bu akımın önde gelen isimleri Cemal Süreya, İlhan Berk, Edip Cansever, Ece Ayhan, Turgut Uyar, Ülkü Tamer ve Sezai Karakoç gibi isimlerdi.

İkinci yenicilerin sloganı “şiir için şiir”dir. Onlar için söz sanatları, kelime oyunları ve hayal dünyası ön plandadır. Bu yüzden mesajlarını doğrudan doğruya vermek yerine imgeleri ve metaforları kullanmayı tercih ettiler.

Bazı 2. yeni şiirleri peşpeşe dizilmiş, ilgisiz sözcüklerden oluşan anlamsız bir biçim gibi görünür. Cümleler belirsiz veya devriktir. Hatta hiç cümle yoktur.

İşte Ece Ayhan’dan birkaç dize:

geçer sokaktan bakışsız bir
Kedi Kara.
Çuvalında yeni ölmüş bir çocuk.
Kanatları sığmamış.
Bağırır Eskici Dede.
Bir korsan gemisi! girmiş körfeze

Biraz kargalarlı, aykırı düşüncelerdir.

Peki bunları niye anlatıyorum?

Çünkü, Tensorflow ile “Char-RNN” yöntemini kullanarak oluşturduğum örnekler bir bakıma bu “2. Yeni” şiirlerine benziyor.
Ancak bu sonucu yaratan baş etmen, sistemi eğitmek amacıyla kullandığım veri kümesinin yeterli büyüklüğe sahip olmayışıdır.
Bir diğer etken ise verilerin içinde yer alan dizim hatalarıdır. Bu durumu ne yazık ki sonradan farkettim. Bütün dizeleri tek tek gözden geçirip düzeltmeye çalışmak, olağanüstü bir çaba ve zaman gerektiriyor.

Yine de, durumu biraz olsun hafifletmek amacıyla “geçersiz sözcük barındıran dizeleri” silen bir süzgeç kullandım. Bu sayede elde ettiğim tüm dizeler, tamamiyle geçerli Türkçe sözcüklerden oluşmaktadır.

İşte benim haylaz öğrencinin dile getirdiği bazı dizeler:

Ne herşey evleri
kağıttan görüyorum
Mutlaka kalacaktı bana inat
İstememiş, sokaklarımız

Kan deniz öyle biri
Anlama gittiğimiz yok
Ben ayı açık sızlar,
umuttan ömrümüz

Kaygılar her şeyleri yerinde

Yağmurları sis böyle düştüm
perde, ilk zamanmış bütün
Ve bu zaman bir güllerden
Aşktı
Acısıyla kaybettiğim karanlıkta

Sonuçların ileride daha fazla anlamsal bütünlük kazanacağını umuyorum. Bunu sağlamak için, öncelikle eğittiğim veri kümesini daha büyük boyutlu ve sorunsuz dizelerden oluşan bir yapıya kavuşturmam gerek. Bu da uzunca bir zamana ihtiyaç duyacak.
Şimdilik, geçici bir yöntem olarak, elde ettiğim ayıklanmış dizeleri mevcut veri kümesine ekleyip, yeniden eğitiyorum. Bu tekrarların ne kadar yarar sağlayacağını zaman gösterecek. Sonuçları yine burada, sizlerle paylaşacağım.

Veri kümesini eğitmek için kullandığım Python kodlarını daha önce paylaşmıştım: http://python.gurmezin.com/tensorflow-ile-acemi-siirler/. Orijinal kodlara, https://github.com/sherjilozair/char-rnn-tensorflow adresinden ulaşabilirsiniz.

Bu çalışmada Python 3.6.5 kullandım. Tensorflow sürümü 1.5.0. 6GB belleği olan GPU ile eğitim işlemi yaklaşık 15 dakika sürüyor.

Veri kümesini internet üzerinden rasgele derlediğim için, şimdilik paylaşmam mümkün değil. İleride, paylaşılabilecek bir veri kümesi oluşturma şansı elde edersem, elbette o veri kümesini sizlerle de paylaşacağım.

Soru, öneri ve eleştirileriniz için yorum alanını kullanabilirsiniz.

Tekrar görüşmek üzere,

Ahmet Aksoy

Oca 172018
 
2.379 kez okundu

Tensorflow ile Acemi Şiirler

Bu yazımda internet üzerinden rasgele derlenmiş şiirler kullanarak eğittiğim sistemden aldığım -şiirimsi- çıktıları paylaşacağım.

şiirimsi tensorflow

Henüz abartılı bir sonuç beklemeyin. Nasıl ki bir bebeğin konuşmayı öğrenmesi için belli bir zamana ihtiyacı varsa, makine öğrenmesi sistemlerinin de öğrenmek için zamana ve çabaya ihtiyacı var.

Bu çalışmada Kullandığım veri seti internet üzerinden rasgele toplanmış yaklaşık 70 bin dize içeriyor. Bu veri özel bir denetimden geçmedi. Şair veya biçem konusunda herhangi bir ayrım uygulanmadı. Tek kaygı, dişe dokunur sonuçlar elde edebilmek için veri boyutunun en az 1 milyon karakter olması gereğiydi. (Bu bir kural olmasa da, bir çok uzmanın önerisi bu yönde.) Kullandığım veri setinin boyutu yaklaşık 2MB.

Program, Tensorflow kütüphanesiyle karakter düzeyli RNN (Recurrent Neural Network) eğitimi yapıyor.

Raspberry Pi 3 üzerinde Tensorflow kurulumunu “Raspberry Pi ile Tensorflow 2” başlıklı yazımda ele almıştım. Tensorflow 1.1.0, Python 3.4 üzerinde sorunsuz bir şekilde çalışıyor. (Halen en son Tensorflow sürüm numarası 1.5)

Eğitim çalışmasında Sherjil Ozair’in github deposundaki kodlarını kullandım: https://github.com/sherjilozair/char-rnn-tensorflow

Eğitim için Python 2 veya Python 3 kullanmak mümkün. Ancak Tensorflow sürümü en az 1.0 olmalıdır.

EĞİTİM İŞLEMLERİ

Eğitim işlemi

komutuyla yapılıyor. Eğer herhangi bir parametre vermezseniz, otomatik olarak “Tiny Shakespeare” verisi kullanılıyor. İsterseniz, internet üzerinden başka veri setleri de bulup indirebilirsiniz.

Sanal ortam üzerindeki kendi eğitim çalışmamda şu kodları kullandım:

Tensorflow

Her batch işlemi yaklaşık .25 saniye tutuyor. Toplam 40050 batch olduğuna göre yaklaşık 10 bin saniyelik bir eğitim süresi olacak. Yani 3 saate yakın bir süre.

Bilgisayarım 4 çekirdekli bir i5. Ancak tam yükte aşırı ısındığından, çökmemesi için işlemcileri 2.53GHz yerine 2.40GHz hızla çalıştırabiliyorum. Aynı işlemler Raspberry Pi 3 üzerinde 8 kat daha fazla bir zamana ihtiyaç duyuyor. Bu yüzden tek bir Raspberry Pi ile bu tür bir eğitim yapmak pek de verimli değil.

Ancak, bir başka bilgisayarda eğitilmiş veri setini Raspi’ye aktarıp, kullanabilirsiniz. Ben de bu yöntemi tercih ediyorum.

SONUÇLAR

Eğitilmiş bir veri setini kullanarak sonuç elde etmek için verilecek komut şu:

Yukarıdaki komuttan da anlaşılacağı gibi, eğitilmiş veri “save/siirler” klasöründe bulunuyor.

Dizüstü bilgisayarımda eğittiğim veriyi Raspberry Pi 3 üzerine “rsync” komutu ile çektim ve raporladım:

Raspberry Pi 3 üzerinde rapor alma işlemi bile yaklaşık 30 saniye sürüyor.

Bir örnek daha:

Çok daha büyük bir veri seti ve -tercihen- GPU kullanabilen bir bilgisayarda eğitilmiş veri setleriyle çok daha anlamlı sonuçlar elde etmek mümkün olabilir.

Eğer güçlü bir bilgisayara sahipseniz veya sabırlı biriyseniz siz de kendi veri kümelerinizi eğitebilirsiniz.

Ahmet Aksoy

Referanslar:

Oca 162018
 
638 kez okundu

Raspberry Pi Maceralarım No-09

Raspberry Pi 3 GPIO ile Bir Ledin Parlaklığını ve Frekansını Kontrol etmek

Önceki yazımda “İki Yönde Yürüyen ışık” örneğini vermiştim. Bu kez bir LED’in parlaklığını ve yanıp sönme frekansını denetleyeceğiz.

Yazının sonunda linkini verdiğim videda konu ile ilgili ayrıntılar mevcut. O yüzden burada sadece kodları ve devre şemasını vermekle yetineceğim.

Raspberry Pi Maceralarım No-09

Kodlar hem Python 2, hem de Python 3 ile uyumludur.
Parlaklık ve frekansı GPIO’nun 12 nolu iğnesinin PWM (Pulse Wave Modulation) özelliğini kullanarak kontrol ediyoruz.

Program kodlarını, devre montajını ve örneğin çalışmasını gösteren videomuz aşağıda.

GPIO ile ilgili örneklerimi burada sonlandırıyorum.

Bir sonraki yazımda yeni bir Tensorflow örneğini ele alacağım.

Beni izlemeye devam edin.

Ahmet Aksoy

Raspberry Pi Maceralarım No-09

Ara 162017
 
Raspberry Pi ve Makine Öğrenmesi
1.021 kez okundu

Raspberry Pi ve Makine Öğrenmesi

Yeni bir startup olan Jetpac, görsel tanıma yazılımı Deepbelief’i farklı sistem ve cihazlar üzerinde kolayca kurulup kullanılabilir hale getirdi. Bu girişim, Raspberry Pi ve Makine Öğrenmesi açısından da önemli bir kazanım olacak gibi görünüyor.

DeepBelief sistemini Linux, iOS, OSX, Android, Raspberry Pi ve Javascript üzerinde kullanmak mümkün.

Bu yazımda DeepBelief’in Raspberry Pi üzerinde kurulumunu ve çalıştırılmasını ele alacağım.

Aynı konu http://www.instructables.com/id/Machine-learning-with-Raspberry-Pi/ adresinde işlenmiş. Ancak orada verilen direktifler benim kullandığım Raspberry Pi B+ v1.2 üzerinde biraz sorun yarattı. Ama bu sorunun çözümü de var.

Şimdi en başından başlayarak aşamalar halinde işlemlerimize geçelim:

1. Önce Raspi’ye bağlanalım: (Ben Ubuntu 16.04 üzerinde ssh komutuyla bağlanıyorum. Siz de kendi sisteminizin gerektirdiği şekilde veya cihazınıza klavye, fare ve ekran bağlayarak çalışabilirsiniz.)

Uzaktan bağlanabilmek için Raspinin IP numarasını bilmeniz gerekir. Bu amaçla

komutunu kullanabilirsiniz. sudo kullanırsanız, root yetkisiyle daha ayrıntılı bir rapor alırsınız.

2. GPU kullanımı için bellek tanımlama:

Dosyanın sonuna aşağıdaki satırı ekleyelim:

3. Bellekte yaptığımız değişikliğin sistem tarafından algılanması için cihazımızı yeniden başlatalım:

4. Raspinin kendini yeniden başlatması birkaç dakika sürebilir. Yeteri kadar bekledikten sonra yeniden bağlanalım.

5. Dosyalarımızı github üzerinden indireceğimiz için git uygulamasını kurmamız gerekiyor.

6. Artık DeepBeliefSDK dosyalarını indirip kurulumunu yapabiliriz.

7. Kurulumu yaptık. Sonucu denetlemek için örnek uygulamayı çalıştıralım:

Eğer herşey yolunda gittiyse 998 satırlık bir rapor elde edeceksiniz.

Ya da benim gibi “Can’t open device file: /var/lib/jpcnn/char_dev” mesajını alacaksınız. Bu hata mesajından kurtulmak için aşağıdaki komutları verin:

Artık uygulamamızı yeniden çalıştırabiliriz:

Elde edeceğimiz rapor resimdekine benzeyecektir.

Raspberry Pi ve Makine Öğrenmesi

deepbelief uygulaması, herhangi bir parametre verilmeden çalıştırıldığı zaman “lena.png” dosyasını varsayılan olarak yükler ve öntanımlı imagenet nesneleriyle karşılaştırarak benzerlik oranlarını bulur.

Raporda sıra no, benzerlik olasılığı ve nesne etiketi sıralanır.
En büyük olasılığa sahip olan görüntülerle eşleşme gerçekleşmiştir diyebiliriz.
Eğer sonuçları olasılık değerine göre sıralarsak, benzerlikleri yorumlamamız daha kolay olur.

İstediğiniz bir başka görseli taratmak isterseniz, adını parametre olarak vermek gerekir. Örneğin “cicek.jpg” dosyasını taratmak istediğimizde vereceğimiz komut şöyledir:

DeepBelief sistemini Ubuntu üzerinde kurmak çok daha kolay oluyor. Siz de kendi sisteminizde deneyin.

Ahmet Aksoy

Referanslar:

Ara 112017
 
497 kez okundu

Bottle Örnek Yapılacaklar Listesi

Önceki yazımda Python Bottle Mikro Ağ-Çerçevesi konusunu kısaca ele almıştım.

Bu yazımda ise https://bottlepy.org sitesindeki örneği, bazı mesajlarını Türkçeleştirerek aktaracağım.

bottle örnek yapılacaklar listesi

İlk çalışmamda edit, save, new gibi terimleri de Türkçeleştirmiştim. Ama sonra Python programcılarının ister istemez teknik İngilizce terimleri bilmeleri gerektiğini düşünerek sadece bazı mesajları Türkçeleştirmekle yetindim.

Orijinal kod listesinde eksik bırakılan help.html dosyasını ekledim ve içine kısaca bottle projesi çalışırken kullanılacak terimlerin işlevini basit bir tablo olarak ilave ettim.

Örijinal kodlarda static_file(‘help.html’, root=’.’) satırında bulunması gereken return anahtar sözcüğü unutulmuştu. Onu da ekledim.

Uygulama, basit “Yapılacaklar Listesi” için gereken işlevlere sahip. Veritabanı olarak SQLite3 kullanıyor.

Düzenlemeleri yaparken Pycharm Community Edition sürümünü kullandım. Python sürümü 3.6.3 ve bottle sürümü 0.12.13.

Pycharm ile “bottle” isimli yeni bir proje klasörü tanımladım.

İlk aşamada veritabanını oluşturmalıyız. Sitede verilen kod satırlarını biraz revize edip veritabani.py dosyasına kaydettim. Bu betik veritabanını oluşturmak amacıyla sadece bir kez çalıştırılacak.

Sistemde ana kod dosyamız dışında help.html isimli bir yardım dosyamız, 3 tane de şablon (template) dosyamız bulunuyor. (SQLite3 veritabanı dosyası todo.db de aynı klasörde.)

Önce html ve şablon dosyaların içeriğini aktarayım:

help.html dosyası

make_table.tpl şablon dosyası

edit_task.tpl şablon dosyası

new_task.tpl şablon dosyası

Son olarak Python kod dosyası todo.py

Dosyalarımızın hepsi bottle proje klasörünün içinde yer alıyor.

Kodların, ek açıklamaya gerek duymayacak kadar açık olduğunu düşünüyorum. Arada bir kaç satırlık açıklama da var zaten.

Yine de sormak istedikleriniz olursa, yorum alanını kullanabilirsiniz.

Ahmet Aksoy

Bottle Örnek Yapılacaklar Listesi


Referanslar:

Ara 102017
 
380 kez okundu

Python Bottle Mikro Ağ-Çerçevesi

bottleBir WSGI (Web Server Gateway Interface) mikro ağ-çerçevesi (micro web-framework) olan bottle, flask gibi benzerlerinden farklı olarak, tüm kod işlemleri için tek bir dosya kullanır. O nedenle web ve ağ-çerçevesi işlemlerine yabancı olanlar için daha kolay anlaşılır ve pratik bir çalışma alanı sunmaktadır.

https://bottlepy.org/docs/dev/ adresinde bu ağ-çerçevesi ile ilgili her türlü açıklamaya ulaşabilirsiniz. Aynı adreste çok güzel, öğretici örnekler yer almaktadır.

Ubuntu Kurulum

Pip ile Kurulum

Kurulumu pip ile yaparken Python 3’ün devrede olmasına dikkat edin.

Sitedeki ilk örneği kendimize uyarlayalım:

Yukarıdaki betiği çalıştırdıktan sonra etkin web gezgin (browser) programınızı açın ve adres kutusuna aşağıdaki ifadeyi yazın:

“Ahmet” yerine kendi adınızı ya da bir başkasınınkini yazabilirsiniz.

Bu örneğin çalışabilmesi için bilgisayarınızda etkin bir yerel ağ sunucusu olmalıdır.

“localhost” yerine gerekiyorsa “127.0.0.1” de kullanabilirsiniz.

@route ifadesinin özel bir işlevi vardır. Dekoratör fonksiyon kavramına yabancıysanız http://python.gurmezin.com/pythonda-fonksiyon-dekoratorleri/ adresindeki yazıma göz atmak isteyebilirsiniz.

Bir sonraki yazımda çok daha kapsamlı ve işlevsel bir örneği sizinle paylaşacağım.

Bottle ile çalışmayı öğrendiğinizde ağ-çerçevesi sistemlerini, dekoratörleri ve jinja2 gibi şablon yapılarını daha yakından tanımış olursunuz. Bu bilgilenme bottle’a göre daha kapsamlı çözümler sunan Flask ve Django gibi tanınmış uygulamalara geçişinizi daha kolay bir hale getirecektir.

Ağ çerçevesi sistemleri yerel ağ üzerinde kullanıldığında, masaüstü uygulamalara benzer çözümler üretebilmenize olanak verir. Üstelik bu tür uygulamaları internet ortamına taşıyarak daha yaygın bir şekilde paylaşılabilmelerini ve kullanılabilmelerini sağlarsınız.

Ahmet Aksoy

Python Bottle Mikro Ağ-Çerçevesi

Referanslar:

Ara 092017
 
520 kez okundu

Pythonda Liste Kısaltmaları

Liste kısaltmaları (list comprehensions), Python diliyle basit, kolay anlaşılır ve hızlı bir şekilde listeler oluşturmamızı sağlar.

Liste Kısaltmaları

Örneğin 0 ile 10 arasındaki ( 0 ve 10 dahil) tam sayıların karelerini hesaplayıp, sonuçları bir liste haline getirelim.

Bu işlemin en basit yöntemi for döngüsü kullanmaktır.

Aynı listeyi list ve map fonksiyonları kullanarak da oluşturabiliriz:

Üçüncü yöntemimiz ise liste kısaltması kullanmaktır:

Her üç yöntemin sonucu da aynıdır:

Şimdi 5 ile 18 arasındaki (5 ve 18 dahil) sayılarla 2’nin üssünü hesaplayalım:

Sonuçlar aynı:

3 ile 28 arasındaki çift sayılar:

Sonuçlar aynı:

2 ile 24 arasındaki tek sayılar için liste kısaltması:

Sonuçlar:

Kısacası yinelenebilir (iterable) bir nesneden bir liste oluşturmak istediğimizde:

Liste kısaltmamıza filtre uygulamak içinse if anahtar sözcüğünü kullanıyoruz:

Bir önceki yazımda liste kısaltmalarının for döngülerinden ve map() fonksiyonundan daha hızlı çalıştığını belirtmiştim.

Şimdi bu kıyaslamayı basit bir örnek üzerinden kendimiz yapalım. Kıyaslama işleminde bir dekoratör fonksiyonu kullanalım.

Sonuç:

Elbette bu sonuçlar betiği çalıştırdığınız bilgisayarın çalışma hızına da bağlıdır ama, aynı işlemin farklı yöntemlerle uygulanmasının farklı süreler aldığını açıkça görebiliyoruz.

Eğer yazdığınız kodlar çalışma hızına duyarlı ise, kesinlikle liste kısaltması kullanmanızı öneriyorum. Eğer böyle bir kaygınız yoksa ve Python konusunda çok fazla deneyiminiz bulunmuyorsa, for yöntemini kullanın. Böylece map veya liste kısaltmasının içeriğini algılamak için çaba sarfetmenize gerek kalmaz.

Şahsen ben, bu konuda Guido van Rossum’a katılıyorum: Eğer çok özel nedenleriniz yoksa lambda, map, filter ve reduce gibi ek araçlara ihtiyacınız olmayacaktır.

Ahmet Aksoy

Referanslar:

Ara 082017
 
1.424 kez okundu

Python Dilinde Lambda, Map, Filter ve Reduce

İşler hep Guido van Rossum’un istediği gibi gitseydi, Python dilinde lambda, map, filter ve reduce kavramları olmayacaktı. Ama bazı gruplardan gelen talepler ağır bastı; sonuç olarak lambda, map ve filter Python çekirdeğinde varlıklarını sürdürmeye devam ederken, sadece reduce functools modülüne kaydırıldı.

Rossum’un bu terimlere karşı çıkmasının gerekçeleri şunlardı:

    • Liste kısaltmaları (list comprehensions) lambda, map, filter ve reduce yerine daha güçlü bir şekilde kullanılabilir.
    • Liste kısaltmaları daha açık ve anlaşılırdır.
    • Python yaklaşımına aykırı bir şekilde, aynı soruna yönelik birden fazla Python çözüm yöntemi olacaktır.

Liste kısaltmaları for döngülerine kıyasla % 35, map fonksiyonuna kıyasla %45 daha hızlı çalışmaktadır. Dolayısıyla kodlama yaparken bu ayrıntıları da bilmekte yarar var.

lambda Fonksiyonu

ile

fonksiyonları aynı işleve sahiptir.
İlkinde anonim bir fonksiyon tanımlayıp, bu fonksiyonu kare değişkenine atıyoruz. Diğerinde ise doğrudan bir fonksiyon tanımlıyoruz.

map Fonksiyonu

map fonksiyonu 2 argüman alır. İlk argüman bir fonksiyon, ikinci argüman ise bir dizilimdir (sequence). map fonksiyonu ilk argüman olarak verilen fonksiyona dizilim elemanlarının her birini argüman olarak atar ve sonuçları bir map nesnesi olarak geri döndürür.

Sonuçlar:

filter Fonksiyonu

Bu fonksiyon da tıpkı map gibi ilk argüman olarak bir fonksiyon, ikinci argüman olarak bir dizilim alır. Ancak geriye sadece, fonksiyona uygulandığında True değer üreten dizilim elemanlarını döndürür.
Aşağıdaki kod satırları 1 ila 20 arasındaki sayılardan 3’e tam olarak bölünenleri geri döndürmektedir.

Sonuçlar:

reduce Fonksiyonu

Bu fonksiyon functools modülünde yer alır ve geriye tek bir sonuç döndürür.
Örneğin 1 ile 100 arasındaki sayıların toplamını bulalım:

Sonuç:

Bir sonraki yazımda liste kısaltmaları (list comprehensions) konusunu ele alacağım.

 

Ahmet Aksoy

Referanslar: